Direct Observation of ATP-Induced Conformational Changes in Single P2X4 Receptors
نویسندگان
چکیده
The ATP-gated P2X(4) receptor is a cation channel, which is important in various pathophysiological events. The architecture of the P2X(4) receptor in the activated state and how to change its structure in response to ATP binding are not fully understood. Here, we analyze the architecture and ATP-induced structural changes in P2X(4) receptors using fast-scanning atomic force microscopy (AFM). AFM images of the membrane-dissociated and membrane-inserted forms of P2X(4) receptors and a functional analysis revealed that P2X(4) receptors have an upward orientation on mica but lean to one side. Time-lapse imaging of the ATP-induced structural changes in P2X(4) receptors revealed two different forms of activated structures under 0 Ca(2+) conditions, namely a trimer structure and a pore dilation-like tripartite structure. A dye uptake measurement demonstrated that ATP-activated P2X(4) receptors display pore dilation in the absence of Ca(2+). With Ca(2+), the P2X(4) receptors exhibited only a disengaged trimer and no dye uptake was observed. Thus our data provide a new insight into ATP-induced structural changes in P2X(4) receptors that correlate with pore dynamics.
منابع مشابه
Agonist binding evokes extensive conformational changes in the extracellular domain of the ATP-gated human P2X1 receptor ion channel.
P2X receptors for ATP have a wide range of physiological roles and comprise a structurally distinct family of ligand-gated trimeric ion channels. The crystal structure of a P2X4 receptor, in combination with mutagenesis studies, has provided a model of the intersubunit ATP-binding sites and identified an extracellular lateral portal, adjacent to the membrane, that funnels ions to the channel po...
متن کامل[Blood flow sensing mechanism via calcium signaling in vascular endothelium].
The structure and function of blood vessels adapt to environmental changes, for example, physical development and exercise. This phenomenon is based on the ability of endothelial cells (ECs) to sense and respond to blood flow. ECs are in direct contact with blood flow and exposed to shear stress. A number of recent studies have revealed that ECs recognize changes in shear stress and transmit si...
متن کاملThe Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors
P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP-their physiological ligand-is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer, and arthritis. In 2009, the first P2X crystal structure, Danio rerio P2X4 in the apo- state, was pub...
متن کاملA loss-of-function polymorphism in the human P2X4 receptor is associated with increased pulse pressure.
The P2X4 receptor is involved in endothelium-dependent changes in large arterial tone in response to shear stress and is, therefore, potentially relevant to arterial compliance and pulse pressure. Four identified nonsynonymous polymorphisms in P2RX4 were reproduced in recombinantly expressed human P2X4. Electrophysiological studies showed that one of these, the Tyr315>Cys mutation (rs28360472),...
متن کامل[Mg(2+) inhibits ATP-activated current mediated by rat P2X4 receptors expressed in Xenopus oocytes].
To investigate the modulation of Mg(2+) on rat P2X4 receptors and its underlying mechanism, we transcribed cDNA coding for wild-type and mutant P2X4 receptors to cRNA in vitro, injected the cRNA to oocytes of Xenopus laevis using the microinjection technique and revealed the effect of Mg(2+) on ATP-activated currents (I(ATP)) mediated by P2X4 receptors using the two-electrode whole-cell voltage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2009